UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY 5070/21 Paper 2 Theory May/June 2013 Candidates answer on the Question Paper. No Additional Materials are required. #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. #### **Section A** Answer all questions. Write your answers in the spaces provided in the Question Paper. #### **Section B** Answer any three questions. Write your answers in the spaces provided in the Question Paper. Electronic calculators may be used. A copy of the Periodic Table is printed on page 20. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. This document consists of 17 printed pages and 3 blank pages. 1 hour 30 minutes ### **Section A** For Examiner's Use [Total: 6] Answer all the questions in this section in the spaces provided. The total mark for this section is 45. A1 Choose from the following compounds to answer the questions below. #### butane calcium carbonate carbon dioxide copper(II) nitrate iron(II) hydroxide iron(III) hydroxide propene sodium chloride sulfur dioxide sulfuric acid Each compound can be used once, more than once or not at all. Name a compound which | (a) | is a green solid, | |-----|--| | | [1] | | (b) | is a saturated hydrocarbon, | | | [1] | | (c) | has a molecule with only 9 atoms, | | | [1] | | (d) | can be used to reduce the acidity in lakes, | | | [1] | | (e) | will turn aqueous acidified potassium dichromate(VI) from orange to green, | | | [1] | | (f) | can be electrolysed in aqueous solution to form two gases. | | | [1] | | | | For Examiner's Use [Total: 9] | A2 | Pho | otosynthesis helps to maintain the percentage of oxygen in air. | | | | | | | | |-----------|-----|---|---|--|--|--|--|--|--| | | (a) | | at is the percentage, by volume, of oxygen in dry air? | | | | | | | | | (b) | In a | ddition to releasing oxygen, photosynthesis produces glucose, $C_6H_{12}O_6$. e the overall equation that represents photosynthesis. | | | | | | | | | (c) | Des | cribe the essential conditions needed for photosynthesis. | | | | | | | | | | | [2] | | | | | | | | | (d) | Pho | tosynthesis is an endothermic reaction. | | | | | | | | | (4) | (i) | Explain, in terms of the energy changes that occur during bond breaking and bond making, why photosynthesis is an endothermic reaction. | [2] | | | | | | | | | | (ii) | Complete the energy profile diagram for photosynthesis. | | | | | | | | | | | On your diagram label the
• products,
• enthalpy change for the reaction, ΔH ,
• activation energy, $E_{\rm a}$. | energy reactants | | | | | | | | | | | progress of reaction | | | | | | | | | | | [3] | | | | | | | A3 Salts are often made by the neutralisation of bases. For Examiner's Use (a) Aqueous potassium hydroxide, of concentration 0.150 mol/dm³, is added to 25.0 cm³ of sulfuric acid in a flask. The graph shows how the pH of the liquid in the flask changes as aqueous potassium hydroxide is added to it. (i) Construct the equation for the complete neutralisation of sulfuric acid by potassium hydroxide.[1] (ii) Use the graph to deduce the volume of aqueous potassium hydroxide required to neutralise 25.0 cm³ of sulfuric acid.[1] | | (iii) | Use your answers to (i) and (ii) to calculate the concentration of sulfuric acid. | For
Examiner's
Use | |-----|-------|---|--------------------------| | (b) | | concentration of sulfuric acid = mol/dm ³ [3] scribe the essential experimental details for preparing a pure sample of zinc nitrate stals from zinc oxide. | | | | | stats from Zine oxide. | | | | | | | | | | | | | | | [4] | | | | | [Total: 9] | | # **BLANK PAGE** A4 The table shows the number of electrons, neutrons and protons in seven different particles. For Examiner's Use | particle | number of | | | | | |----------|-----------|----------|---------|--|--| | particle | electrons | neutrons | protons | | | | Α | 12 | 12 | 12 | | | | В | 15 | 16 | 15 | | | | С | 17 | 18 | 17 | | | | D | 17 | 20 | 17 | | | | E | 18 | 16 | 16 | | | | F | 18 | 22 | 18 | | | | G | 18 | 20 | 20 | | | | (a) | What is the nucleon number for F ? | | |-----|---|------------| | | | [1] | | (b) | Explain why A is a neutral particle. | | | | | | | | | | | | | [2] | | (c) | Which particles are isotopes of the same element? | | | | | [1] | | (d) | What is the charge on E ? | | | | | [1] | | (e) | Which particles have the same relative mass? | | | | | [1] | | | | [Total: 6] | **A5** Analysis of compound **X** shows it has the following composition. | For | |------------| | Examiner's | | Use | [3] | element | percentage by mass | |----------|--------------------| | nitrogen | 11.1 | | hydrogen | 3.20 | | chromium | 41.3 | | oxygen | 44.4 | (a) Show that ${\bf X}$ has the formula ${\bf N_2H_8Cr_2O_7}.$ | (b) | An a | aqueous solution of X is orange. | | |-----|------|---|----| | | Sug | gest which element in X is responsible for the orange colour. | | | | | [| 1] | | (c) | An a | acidified aqueous solution of ${f X}$ reacts with aqueous potassium iodide to form iodine | е. | | | Stat | te and explain what you can conclude about the chemical nature of X . | | | | | | | | | | | | | | | [2 | 2] | | (d) | | leous sodium hydroxide is added to solid ${\bf X}$ and the mixture is warmed. A gas the s moist red litmus blue is evolved. | at | | | (i) | Give the formula of the positive ion present in X . | | | | | [| 1] | | | (ii) | Suggest the formula of the other ion present in X. | | | | | ſ· | 11 | | (e) | When solid X is heated only Cr_2O_3 , water and gas Z are formed. | For | |-----|---|-------------------| | | Name gas Z . | Examiner's
Use | | | [1] | | | | [Total: 9] | | Question A6 starts on page 10. For Examiner's Use | A6 | Potassium is in Group I and chlorine is in Group VII of the Periodic Table. | | | | |-----------|---|--------------|---|--| | | Pota
Cl ₂ (| | m forms an oxide with the formula ${\rm K_2O}$ and chlorine forms an oxide with the formula | | | | (a) | (i) | Draw a 'dot-and-cross' diagram for ${\rm C}\it{l}_{\rm 2}{\rm O}.$ | | | | | | You only need to draw the outer shell electrons. | | | | | | | | | | | | | | | | | | [1] | | | | | (ii) | Explain, using ideas about structure and bonding, why $\mathrm{C}\mathit{l}_2\mathrm{O}$ has a low melting point. | | | | | | | | | | | | | | | | | | [2] | | | | (b) | | w diagrams to show the electronic structures and charges of both ions present in assium oxide. | [2] | | | | (c) | Chlo
wate | prine forms another oxide $\mathrm{C}l_2\mathrm{O}_7$. One mole of this oxide reacts with one mole of er to make two moles of an acid and no other products. | | | | | Con | struct the equation for this reaction. | | | | | | [1] | | | | | | [Total: 6] | | | | | | | | ## **Section B** For Examiner's Use Answer three questions from this section in the spaces provided. The total mark for this section is 30. | 37 | Mal | achit | e is an ore of copper. The formula of malachite is ${\rm CuCO_3.Cu(OH)_2.}$ | |----|-----|-------|--| | | Mal | achit | e reacts as though it is a mixture of copper(II) carbonate and copper(II) hydroxide. | | | | | sample of malachite is added to excess dilute hydrochloric acid, $HCl(aq)$. The carbon ormed is collected and has a volume of $96\mathrm{cm}^3$ at room temperature and pressure. | | | (a) | Wha | at would you observe when malachite reacts with HCl(aq)? | | | | | | | | | | [2] | | | (b) | Con | struct the equation for the reaction between malachite and $HCl(aq)$. | | | | | [2] | | | (c) | Cald | culate the mass of carbonate ion, ${\rm CO_3}^{2-}$, in the sample of malachite. | mass of $CO_3^{2-} = \dots g [3]$ | | | (d) | Cop | per is extracted from malachite by heating with carbon. | | | | (i) | Construct an equation for the reduction of malachite by carbon. | | | | | [2] | | | | (ii) | Malachite is a finite resource. Give one other reason why copper should be recycled. | | | | | | [Total: 10][1] **B8** Carboxylic acids are a homologous series of organic compounds. For Examiner's Use The table shows information about some carboxylic acids. | carboxylic acid | formula | melting point/°C | boiling point/°C | |-------------------|---|------------------|------------------| | methanoic acid | HCO ₂ H | 8 | 100 | | ethanoic acid | CH ₃ CO ₂ H | 17 | 118 | | | C ₂ H ₅ CO ₂ H | -22 | 141 | | butanoic acid | C ₃ H ₇ CO ₂ H | | | | hexadecanoic acid | C ₁₅ H ₃₁ CO ₂ H | 63 | 269 | | (a) | What is meant by the term <i>homologous series</i> ? | |-----|---| | | | | | | | | [2] | | (b) | Name the carboxylic acid with the formula $\mathrm{C_2H_5CO_2H}$. | | | [1] | | (c) | Deduce the general formula for a carboxylic acid. | | | [1] | | (d) | It is more difficult to estimate the melting point of butanoic acid than its boiling point. Use the data in the table to explain why. | | | | | | [1] | | (e) | When warmed in the presence of concentrated sulfuric acid, butanoic acid reacts with ethanol to make an ester. | | | Name and draw the structure, showing all the atoms and all the bonds, of this ester. | | | name | | | structure | | (f) | Hex | adecanoic acid, C ₁₅ H ₃₁ CO ₂ H, is a weak acid. | For | |-----|------|---|---------| | | (i) | Write an equation to show the dissociation of hexadecanoic acid when dissolved in water. Use the equation to explain the meaning of the term weak acid. | Use Use | | | | | | | | | [2] | | | | (ii) | What is the formula of the salt formed when hexadecanoic acid reacts with aqueous sodium hydroxide? | | | | | [1] | | | | | [Total: 10] | | | B9 | Ethanol is | manufactured b | v the h | vdration o | f ethene | |----|------------|-------------------|-----------|-------------|----------| | | | THAILAILAOLAICA D | y 1110 11 | y aration o | | | For | |------------| | Examiner's | | llse | $$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$ $\Delta H = -45 \text{ kJ/mol}$ This reaction is exothermic. The reaction is normally carried out at a pressure of 70 atmospheres and a temperature of $300\,^{\circ}\text{C}$. | 000 | ٥. | | |-----|---------|---| | (a) | The | reaction is carried out at 70 atmospheres pressure and at 600 °C rather than 300 °C. | | | Pred | dict and explain the effect of raising the temperature on | | | (i) | the rate of reaction, | | | | | | | | | | | | [2] | | | (ii) | the position of equilibrium. | | | | | | | | | | | | [2] | | (b) | The 300 | reaction is carried out at 20 atmospheres rather than 70 atmospheres, and at °C. | | | Pred | dict and explain the effect of decreasing the pressure on | | | (i) | the rate of reaction, | | | | | | | | | | | | [2] | | | (ii) | the position of equilibrium. | | | | | | | | | | | | [2] | | (C) | Calculate the energy released when 10 moles of ethanol are formed. | For
Examiner's
Use | |-----|--|--------------------------| | | energy released =kJ [1] | | | (d) | The hydration of ethene uses an acid catalyst. | | | | Explain how a catalyst can increase the rate of reaction. | | | | | | | | [1] | | | | [Total: 10] | | **B10** Aqueous silver nitrate can be electrolysed using inert electrodes. Solid silver is formed on the cathode (negative electrode). For Examiner's Use The table shows how the mass of silver formed is affected by four factors. | temperature
of solution
/°C | duration of
electrolysis
/seconds | current passed
through
solution/amps | concentration of
solution
/mol/dm ³ | mass of silver
formed
/g | |-----------------------------------|---|--|--|--------------------------------| | 25 | 100 | 9.65 | 1.0 | 0.108 | | 30 | 100 | 9.65 | 1.0 | 0.108 | | 25 | 100 | 9.65 | 0.5 | 0.108 | | 25 | 200 | 9.65 | 0.5 | 0.216 | | 25 | 100 | 19.3 | 1.0 | 0.216 | | (a) | The | electrode reaction at the cathode is reduction. | |-----|------|--| | | (i) | Construct the equation for the reaction which occurs at the cathode. | | | | [1] | | | (ii) | Explain why this reaction is reduction. | | | | | | | | [1] | | (b) | Stat | te how each of the following factors affects the mass of silver formed at the cathode. | | | tem | perature of solution | | | | | | | | | | | dura | ation of electrolysis | | | | | | | | | | | curr | rent used | | | | | | | | | | | con | centration of solution | | | | | | | | | [4] | (C) | Explain why aqueous sliver nitrate can be electrolysed but solid sliver nitrate cannot. | For
Examiner's
Use | |-----|---|--------------------------| | | | | | | [2] | | | (d) | Aqueous silver nitrate reacts with dilute hydrochloric acid to form a white precipitate. | | | | Construct the ionic equation, including state symbols, for the formation of this white precipitate. | | | | [2] | | | | [Total: 10] | | # **BLANK PAGE** ## **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. DATA SHEET The Periodic Table of the Elements | 1 | | | | | | |-----------------------------------|-------|-----|---|----------|---|----|----|----------------|------|----|------------------|----|--------|-----------------|------|----------|------------------|-----|----------|-------------------|-----|----|----------------|---------------------------|---------------|--------------------------| | | | 0 | 4 | ¥ ‡ | 2 | 20 | Ne | Neon
10 | 40 | Ar | Argon
18 | 84 | ¥ | Krypton
36 | 131 | Xe | Xenon
54 | 222 | R | Radon
86 | | | | 175 | Ľ | Lutetium | | | | IIΛ | | | | 19 | ш | Fluorine
9 | 35.5 | CI | Chlorine
17 | 80 | ģ | Bromine
35 | 127 | Ι | lodine
53 | 210 | Αt | Astatine
85 | | | | 173 | Υb | Ytterbium | | | | ΙΛ | | | | 16 | 0 | Oxygen
8 | 32 | S | | 79 | Se | Selenium
34 | 128 | <u>a</u> | Tellurium
52 | 209 | Ъ | Polonium
84 | | | | 169 | E | Thulium | | | | > | | | | 14 | z | Nitrogen
7 | 31 | ۵ | Phosphorus
15 | 75 | As | Arsenic
33 | 122 | Sb | Antimony
51 | 209 | <u>.</u> | Bismuth
83 | | | | 167 | ш | Erbium | | | | 2 | | | | 12 | ပ | Carbon
6 | 28 | Si | _ | 73 | Ge | Germanium
32 | 119 | Sn | Tin
50 | 207 | Pb | Lead
82 | | | | 165 | 운 | Holmium | | | | ≡ | | | | Ξ | Δ | Boron
5 | 27 | ΝI | Aluminium
13 | 70 | Са | Gallium
31 | 115 | In | Indium
49 | 204 | 11 | Thallium
81 | | | | 162 | ۵ | Dysprosium | | S | | | | | • | | | | | | | 65 | Zu | Zinc
30 | 112 | ပ္ပ | Cadmium
48 | 201 | Hg | Mercury
80 | | | | 159 | Д | Terbium | | Element | | | | | | | | | | | | 64 | D
C | Copper
29 | 108 | Ag | Silver
47 | 197 | Au | Gold
79 | | | | 157 | gg | Gadolinium | | he Periodic Table of the Elements | Group | | | | | | | | | | | 59 | Z | Nickel
28 | 106 | Pd | Palladium
46 | 195 | Ŧ | Platinum
78 | | | | 152 | Ш | Europium | | dic Table | Gro | | | | | | | | | | | 59 | ပိ | Cobalt
27 | 103 | R | Rhodium
45 | 192 | <u> </u> | Iridium
77 | | | | 150 | Sm | Samarium | | ne Perio | | | - | T | 1 | | | | | | | 56 | Ъ | Iron
26 | 101 | Bu | Ruthenium
44 | 190 | SO. | Osmium
76 | | | | 147 | Pm | Promethium | | F | | | | | | | | | | | | 55 | Mn | Manganese
25 | | ဥ | Technetium
43 | 186 | Be | Rhenium
75 | | | | 144 | S | Neodymium | | | | | | | | | | | | | | 52 | ပ် | Chromium
24 | 96 | Mo | Molybdenum
42 | 184 | ≽ | Tungsten
74 | | | | 141 | Ā | Praseodymium | | | | | | | | | | | | | | 51 | > | Vanadium
23 | 93 | Q
N | Niobium
41 | 181 | <u>Б</u> | Tantalum
73 | | | | 140 | ဝီ | Cerium | | | | | | | | | | | | | | 48 | F | Titanium
22 | 91 | Ż | Zirconium
40 | 178 | Ξ | Hafhium
72 | | | | _ | | | | | | | | | | | | | | | | 45 | Sc | Scandium
21 | 89 | > | Yttrium
39 | 139 | Га | Lanthanum
57 * | 227 | Ac | Actinium
89 | מסייים ל | U SCIIGO | selles | | | | = | | | | თ | Be | Beryllium
4 | 24 | Mg | Magnesium
12 | 40 | Ca | Calcium
20 | 88 | Š | Strontium
38 | 137 | Ва | Barium
56 | 226 | Ra | Radium
88 | * F8_71 Lanthanoid corios | - A 0+in 0 id | T 90-103 Actinoid series | | | | _ | | | | 7 | = | Lithium
3 | 23 | Na | Sodium
11 | 39 | ¥ | Potassium
19 | 85 | Вb | Rubidium
37 | 133 | Cs | Caesium
55 | 223 | ቷ | Francium
87 | * 58_71 | 1 - 1 - 00 + | T 30-100 | | 2013 | 3 | | | | | | | | | | | | 50 | 70/21 | /N/I | 1/1 | ว | | | | | | | | | | | - | | | | | | | | | | | | • | | | |----------------------------|---------------|--------------------|---------------|-----------------|-----------------|-----------------|--------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------|-------------------| | opripo pripo | 140 | 141 | 144 | 147 | 150 | 152 | 157 | 159 | 162 | | | 169 | 173 | 175 | | and series | S | ሗ | P | Pm | Sm | Ш | gg | Тb | ò | 운 | ш | H | ΛÞ | Ľ | | | Cerium | Praseodymium | | Promethium | Samarium | Europium | Gadolinium | Terbium | Dysprosium | 5 | Erbium | Thulium | Ytterbium | Lutetium | | Г | 28 | 29 | 00 | 10 | 29 | 63 | 64 | 65 | 99 | /9 | | 69 | /0 | /1 | | a = relative atomic mass | 232 | 231 | 238 | 237 | 244 | 243 | 247 | 247 | 251 | 252 | | 258 | 259 | 260 | | X = atomic symbol | 丘 | Ра | - | Ν | Pu | Am | Cm | 쓢 | ర | Es | | Md | 2 | ۲ | | b = atomic (proton) number | Thorium
90 | Protactinium
91 | Uranium
92 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | Californium
98 | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | Lawrencium
103 | | | | | | | | | | | | | | | | | Key The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.).